Developer Guide: OCR API Integration Best Practices
OCR Platform Team
Technical recommendations for integrating document extraction APIs, covering error handling, performance optimization, and production deployment strategies.
Integrating OCR APIs into production applications requires more than basic API calls. This guide covers patterns and practices that ensure reliable, performant, and maintainable document extraction implementations.
Architecture Patterns
Synchronous vs. Asynchronous Processing
Synchronous (Direct Response):
const result = await fetch("/api/extract", {
method: "POST",
body: formData
});
const data = await result.json();
// Use extracted data immediately
Best for:
- Interactive user uploads
- Single document processing
- Low latency requirements
Asynchronous (Webhook Callback):
// Submit document
const { jobId } = await submitDocument(file);
// Receive results via webhook
app.post("/webhook/extraction-complete", (req, res) => {
const { jobId, results } = req.body;
processResults(jobId, results);
});
Best for:
- Batch processing
- Large documents
- High-volume applications
- Background processing pipelines
Queue-Based Architecture
For high-volume applications, implement job queues:
[Upload] → [Queue] → [Worker Pool] → [Results Store]
↓
[OCR API Calls]
Benefits:
- Rate limit management
- Retry handling
- Load balancing across workers
- Graceful degradation under load
Error Handling
Categorize Errors Appropriately
Retryable Errors:
- Network timeouts
- Rate limit exceeded (429)
- Service temporarily unavailable (503)
Non-Retryable Errors:
- Invalid API key (401)
- Malformed request (400)
- Unsupported document type
- Image quality too low
Implement Exponential Backoff
async function extractWithRetry(file, maxRetries = 3) {
for (let attempt = 0; attempt < maxRetries; attempt++) {
try {
return await extractDocument(file);
} catch (error) {
if (!isRetryable(error) || attempt === maxRetries - 1) {
throw error;
}
const delay = Math.pow(2, attempt) * 1000; // 1s, 2s, 4s
await sleep(delay);
}
}
}
Graceful Degradation
When extraction fails, provide fallback experiences:
async function processDocument(file) {
try {
const extracted = await extractDocument(file);
return { type: "extracted", data: extracted };
} catch (error) {
// Fall back to manual entry with image preview
const imageUrl = await uploadForManualReview(file);
return { type: "manual", imageUrl };
}
}
Performance Optimization
Image Preprocessing
Optimize images before API submission:
async function preprocessImage(file) {
// Resize if too large (reduces upload time and API processing)
if (file.size > 5_000_000) {
file = await resizeImage(file, { maxWidth: 2000 });
}
// Convert to JPEG if PNG (smaller file size)
if (file.type === "image/png") {
file = await convertToJpeg(file, { quality: 85 });
}
return file;
}
Parallel Processing
Process multiple documents concurrently:
async function extractBatch(files) {
const CONCURRENCY = 5; // Respect rate limits
const results = [];
for (let i = 0; i < files.length; i += CONCURRENCY) {
const batch = files.slice(i, i + CONCURRENCY);
const batchResults = await Promise.all(
batch.map(file => extractDocument(file))
);
results.push(...batchResults);
}
return results;
}
Caching Strategies
Cache extraction results when appropriate:
async function extractWithCache(file) {
const fileHash = await hashFile(file);
const cached = await cache.get(fileHash);
if (cached) {
return cached;
}
const result = await extractDocument(file);
await cache.set(fileHash, result, { ttl: 86400 }); // 24 hours
return result;
}
Validation and Post-Processing
Field-Level Validation
Validate extracted data before use:
function validateExtraction(result) {
const errors = [];
// Check required fields
if (!result.documentNumber) {
errors.push("Missing document number");
}
// Validate formats
if (result.expirationDate && !isValidDate(result.expirationDate)) {
errors.push("Invalid expiration date format");
}
// Business logic validation
if (result.expirationDate && new Date(result.expirationDate) < new Date()) {
errors.push("Document is expired");
}
return { valid: errors.length === 0, errors };
}
Confidence Score Handling
Use confidence scores to drive workflows:
function routeByConfidence(result) {
const avgConfidence = calculateAverageConfidence(result.fields);
if (avgConfidence >= 0.95) {
return "auto_approve";
} else if (avgConfidence >= 0.70) {
return "quick_review"; // Human verifies pre-filled data
} else {
return "manual_entry"; // Human enters from image
}
}
Security Considerations
API Key Management
Never expose API keys client-side:
// BAD: Client-side API call
const result = await fetch("https://api.ocrplatform.com/extract", {
headers: { "Authorization": "Bearer sk_live_xxx" } // Exposed!
});
// GOOD: Proxy through your backend
const result = await fetch("/api/extract", {
method: "POST",
body: formData
});
Data Handling
// Encrypt sensitive extracted data at rest
const encryptedData = await encrypt(extractedData);
await database.store(documentId, encryptedData);
// Implement data retention policies
await scheduleForDeletion(documentId, { days: 30 });
Monitoring and Observability
Track Key Metrics
async function extractWithMetrics(file) {
const startTime = Date.now();
try {
const result = await extractDocument(file);
metrics.histogram("extraction_duration_ms", Date.now() - startTime);
metrics.increment("extraction_success");
metrics.histogram("extraction_confidence", result.confidence);
return result;
} catch (error) {
metrics.increment("extraction_failure", { error: error.code });
throw error;
}
}
Alerting Thresholds
Set alerts for:
- Error rate exceeding 5%
- Average latency exceeding 10 seconds
- Confidence scores trending downward
- Rate limit warnings approaching threshold
Tagged with: